A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation.

نویسندگان

  • Mark B Meyer
  • Nancy A Benkusky
  • Martin Kaufmann
  • Seong Min Lee
  • Melda Onal
  • Glenville Jones
  • J Wesley Pike
چکیده

The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In search of regulatory circuits that control the biological activity of vitamin D.

Although the cytochrome P450 CYP27B1 plays a critical role in vitamin D biology, the molecular mechanisms involved in regulation of CYP27B1 have remained undefined. A new study has identified a kidney-specific control module distal to the Cyp27b1 gene that mediates the basal activity and hormonal regulation of Cyp27b1 This work provides a novel mechanism indicating differential regulation of Cy...

متن کامل

De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase.

The conversion of vitamin D into an active ligand for the vitamin D receptor requires 25-hydroxylation in the liver and 1alpha-hydroxylation in the kidney. Mitochondrial and microsomal vitamin D 25-hydroxylase enzymes catalyze the first reaction. The mitochondrial activity is associated with sterol 27-hydroxylase, a cytochrome P450 (CYP27A1); however, the identity of the microsomal enzyme has r...

متن کامل

CYP24A1 and CYP27B1 polymorphisms modulate vitamin D metabolism in colon cancer cells.

Vitamin D is a well-studied agent for cancer chemoprevention and treatment. Its chief circulating metabolite, 25-hydroxyvitamin D, is converted into the active hormone 1,25-dihydroxyvitamin D (1,25D) by the cytochrome P450 enzyme CYP27B1 in kidney and other tissues. 1,25D is then deactivated by CYP24A1 and ultimately catabolized. Colorectal carcinoma cells express CYP27B1 and CYP24A1 that local...

متن کامل

Molecular and Cellular Pathobiology CYP24A1 and CYP27B1 Polymorphisms Modulate Vitamin D Metabolism in Colon Cancer Cells

Vitamin D is a well-studied agent for cancer chemoprevention and treatment. Its chief circulating metabolite, 25-hydroxyvitamin D, is converted into the active hormone 1,25-dihydroxyvitamin D (1,25D) by the cytochrome P450 enzyme CYP27B1 in kidney and other tissues. 1,25D is then deactivated by CYP24A1 and ultimately catabolized. Colorectal carcinoma cells express CYP27B1 and CYP24A1 that local...

متن کامل

Selective use of multiple vitamin D response elements underlies the 1 α,25-dihydroxyvitamin D3-mediated negative regulation of the human CYP27B1 gene

The human 25-hydroxyvitamin D3 (25(OH)D3) 1alpha-hydroxylase, which is encoded by the CYP27B1 gene, catalyzes the metabolic activation of the 25(OH)D3 into 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), the most biologically potent vitamin D3 metabolite. The most important regulator of CYP27B1 gene activity is 1alpha,25(OH)2D3 itself, which down-regulates the gene. The down-regulation of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 292 42  شماره 

صفحات  -

تاریخ انتشار 2017